
Improving MapReduce Performance through Data Placement in
Heterogeneous Hadoop Clusters

Jiong Xie, Shu Yin, Xiaojun Ruan, Zhiyang Ding, Yun Tian,
James Majors, Adam Manzanares, and Xiao Qin

Department of Computer Science and Software Engineering
Auburn University, Auburn, AL 36849-5347

Email: {jzx0009, szy0004, xzr0001, dingzhi, tianyun, majorjh, acm0008}@eng.auburn.edu,
xqin@auburn.edu http://www.eng.auburn.edu/∼xqin

Abstract—MapReduce has become an important distributed
processing model for large-scale data-intensive applications
like data mining and web indexing. Hadoop–an open-source
implementation of MapReduce is widely used for short jobs
requiring low response time. The current Hadoop imple-
mentation assumes that computing nodes in a cluster are
homogeneous in nature. Data locality has not been taken into
account for launching speculative map tasks, because it is
assumed that most maps are data-local. Unfortunately, both
the homogeneity and data locality assumptions are not satisfied
in virtualized data centers. We show that ignoring the data-
locality issue in heterogeneous environments can noticeably
reduce the MapReduce performance. In this paper, we address
the problem of how to place data across nodes in a way that
each node has a balanced data processing load. Given a data-
intensive application running on a Hadoop MapReduce cluster,
our data placement scheme adaptively balances the amount of
data stored in each node to achieve improved data-processing
performance. Experimental results on two real data-intensive
applications show that our data placement strategy can always
improve the MapReduce performance by rebalancing data
across nodes before performing a data-intensive application
in a heterogeneous Hadoop cluster.

I. INTRODUCTION

An increasing number of popular applications become
data-intensive in nature. In the past decade, the World
Wide Web has been adopted as an ideal platform for
developing data-intensive applications, since the communi-
cation paradigm of the Web is sufficiently open and power-
ful. Representative data-intensive Web applications include
search engines, online auctions, webmail, and online retail
sales. Data-intensive applications like data mining and web
indexing need to access ever-expanding data sets ranging
from a few gigabytes to several terabytes or even petabytes.
Google, for example, leverages the MapReduce model to
process approximately twenty petabytes of data per day in
a parallel fashion [8]. MapReduce is an attractive model
for parallel data processing in high-performance cluster
computing environments. The scalability of MapReduce is
proven to be high, because a job in the MapReduce model
is partitioned into numerous small tasks running on multiple

machines in a large-scale cluster.
Hadoop – a popular open-source implementation of the

Google’s MapReduce model is primarily developed by Ya-
hoo [1]. Hadoop is used by Yahoo servers, where hun-
dreds of terabytes of data are generated on at least 10,000
cores [4]. Facebook makes use of Hadoop to process more
than 15 terabytes of new data per day. In addition to Yahoo
and Facebook, a wide variety of websites like Amazon
and Last.fm are employing Hadoop to manage massive
amount of data on a daily basis [14]. Apart from Web data-
intensive applications, scientific data-intensive applications
(e.g., seismic simulation and natural language processing)
take maximum benefits from the Hadoop system [6][14].

The MapReduce framework can simplify the complex-
ity of running distributed data processing functions across
multiple nodes in a cluster, because MapReduce allows
a programmer with no specific knowledge of distributed
programming to create his/her MapReduce functions running
in parallel across multiple nodes in the cluster. MapReduce
automatically handles the gathering of results across the
multiple nodes and return a single result or set. More im-
portantly, the MapReduce platform can offer fault tolerance
that is entirely transparent to programmers [8].

We observe that data locality is an determining factor
for the MapReduce performance. To balance load, Hadoop
distributes data to multiple nodes based on disk space
availability. Such data placement strategy is very practical
and efficient for a homogeneous environment where nodes
are identical in terms of both computing and disk capacity.
In homogeneous computing environments, all the nodes
have identical workload, indicating that no data needs to
be moved from one node into another. In a heterogeneous
cluster, however, a high-performance nodes can complete
processing local data faster than a low-performance node.
After the fast node finished processing data residing in its
local disk, the node has to handle unprocessed data in a
remote slow node. The overhead of transferring unprocessed
data from slow nodes to fast peers is high if the amount of
moved data is huge. An approach to improve MapReduce

978-1-4244-6534-7/10/$26.00 ©2010 IEEE

performance in heterogeneous computing environments is to
significantly reduce the amount of data moved between slow
and fast nodes in a heterogeneous cluster. To balance data
load in a heterogeneous Hadoop cluster, we are motivated to
investigate data placement schemes, which aim to partition a
large data set into data fragments that are distributed across
multiple heterogeneous nodes in a cluster.

In this study, we developed a data placement mechanism
in the Hadoop distributed file system or HDFS to initially
distribute a large data set to multiple nodes in accordance to
the computing capacity of each node. More specifically, we
implemented a data reorganization algorithm in addition to
a data redistribution algorithm in HDFS. The data reorgani-
zation and redistribution algorithms implemented in HDFS
can be used to solve the data skew problem due to dynamic
data insertions and deletions.

The rest of the paper is organized as follows. Section II
gives an overview of the MapReduce programming model
and a brief introduction to the Hadoop distribution file
system (HDFS). The data distribution algorithm is described
in Section III. Section IV describes the implementation
details of our data placement mechanism. In Section V, we
present the evaluation results. Section VI reviews related
work and Section VII concludes the paper with future
research directions.

II. BACKGROUND AND MOTIVATION

A. MapReduce Overview

The MapReduce programming model was proposed by
Google to support data-intensive applications running on
parallel computers like commodity clusters. Two important
functional programming primitives in MapReduce are Map
and Reduce. The Map function is applied on application-
specific input data to generate a list of intermediate <
key, value > pairs. Then, the Reduce function is applied
to the set of intermediate pairs with the same key. Typically,
the Reduce function produces zero or more output pairs
by performing a merging operation. All the output pairs
are finally sorted based on their key values. Programmers
only need to implement the Map and Reduce functions,
because a MapReduce programming framework can facil-
itate some operations (e.g., grouping and sorting) on a set
of < key, value > pairs.

The beauty of the MapReduce model lies in its simplic-
ity, because the programmers just have to focus on data-
processing functionality rather than on parallelism details.
The programmers provide high-level parallelism informa-
tion, thereby allowing the Map and Reduce functions to be
executed in parallel across multiple nodes.

In the past few years, the MapReduce framework has
been employed to develop a wide variety of data-intensive
applications (e.g., data mining and bioinformatics) in large-
scale systems. There exists several implementations of
MapReduce on various hardware platforms. For example,

Phoenix is a MapReduce implementation on multi-core
processors [13]. Mars is an efficient implementation of the
MapReduce model on graphics processors or GPUs [5].
Mpa-Reduce-Merge is a MapReduce implementation for
relational databases [9].

B. Hadoop and Hadoop Distributed File System

Hadoop is a successful implementation of the MapRe-
duce model. The Hadoop framework consists of two main
components: the MapReduce language and the Hadoop’s
Distributed File System (or HDFS for short). The Hadoop
runtime system coupled with HDFS manages the details
of parallelism and concurrency to provide ease of parallel
programming with reinforced reliability. In a Hadoop cluster,
a master node controls a group of slave nodes on which the
Map and Reduce functions run in parallel. The master node
assigns a task to a slave node that has any empty task slot.

Typically, computing nodes and storage nodes in a
Hadoop cluster are identical from the hardware’s perspec-
tive. In other words, the Hadoop’s Map/Reduce framework
and the Hadoop’s HDFS are, in many cases, running on
a set of homogeneous nodes including both computing
and storage nodes. Such a homogeneous configuration of
Hadoop allows the Map/Reduce framework to effectively
schedule computing tasks on an array of storage nodes where
data files are residing, leading to a high aggregate bandwidth
across the entire Hadoop cluster.

An input file passed to Map functions resides on the
Hadoop distributed file system on a cluster. Hadoop’s HDFS
splits the input file into even-sized fragments, which are
distributed to a pool of slaves for further MapReduce pro-
cessing. HDFS closely resembles the Google file system
or GFS [15]. Unlike other distributed file systems, HDFS
aims to provide high throughput access to large application
data sets. HDFS is highly reliable because each file frag-
ment stored on a data node is replicated for fault-tolerance
purpose. HDFS uses three-way replication to ensure that
files residing in a Hadoop cluster are always intact in three
separate nodes in the cluster.

C. Motivation

Fig. 1 shows how a Hadoop program accesses HDFS
in a cluster. The MapReduce program directs file queries
to a namenode, which in turn passes the file requests to
corresponding nodes in the cluster. Then, the data nodes
concurrently feed Map functions in the MapReduce program
with large amount data. When new application data are
written to a file in HDFS, file fragments of the file are
stored on multiple data nodes across the Hadoop cluster.
HDFS distributes file fragments across the cluster, assuming
that all the nodes have identical computing capacity. Such
a homogeneity assumption, which can potentially hurt the
Hadoop performance of heterogeneous clusters, motivates

Data

M
a
p
()

D
n

D
2

R
e
d
u
c
e
()

R
e
d
u
c
e
()

O
1

O
n

M
a
p
()

M
a
p
()

!
"
#

D
1
#

D
1

D
2
#

Figure 1: The MapReduce programming model, where a
Hadoop application accesses Hadoop distributed file

system (HDFS) in a cluster.

us to develop data placement schemes that can noticeably
improve the performance of heterogeneous Hadoop clusters.

III. DATA PLACEMENT MANAGEMENT

A. Data Placement in Heterogeneous Clusters

In a cluster where each node has a local disk, it is
efficient to move data processing operations to nodes where
application data are located. If data are not locally available
in a processing node, data have to be migrated via network
interconnects to the node that performs the data processing
operations. Migrating huge amount of data leads to excessive
network congestion, which in turn can deteriorate system
performance. HDFS enables Hadoop MapReduce applica-
tions to transfer processing operations toward nodes storing
application data to be processed by the operations.

In a heterogeneous cluster, the computing capacities of
nodes may vary significantly. A high-speed node can finish
processing data stored in a local disk of the node faster
than low-speed counterparts. After a fast node complete the
processing of its local input data, the node must support load
sharing by handling unprocessed data located in one or more
remote slow nodes. When the amount of transferred data
due to load sharing is very large, the overhead of moving
unprocessed data from slow nodes to fast nodes becomes a
critical issue affecting Hadoop’s performance. To boost the
performance of Hadoop in heterogeneous clusters, we aim
to minimize data movement between slow and fast nodes.
This goal can be achieved by a data placement scheme that

distribute and store data across multiple heterogeneous nodes
based on their computing capacities. Data movement can be
reduced if the number of file fragments placed on the disk
of each node is proportional to the node’s data processing
speed.

To achieve the best I/O performance, one may make
replicas of an input data file of a Hadoop application in
a way that each node in a Hadoop cluster has a local copy
of the input data. Such a data replication scheme can, of
course, minimize data transfer among slow and fast nodes
in the cluster during the execution of the Hadoop application.
The data-replication approach has several limitations. First,
it is very expensive to create replicas in a large-scale
cluster. Second, distributing a large number of replicas can
wasterfully consume scarce network bandwidth in Hadoop
clusters. Third, storing replicas requires an unreasonably
large amount of disk capacity, which in turn increases the
cost of Hadoop clusters.

Although all replicas can be produced before the execu-
tion of Hadoop applications, significant efforts must be make
to reduce the overhead of generating replicas. If the data-
replication approach is employed in Hadoop, one has to ad-
dress the problem of high overhead for creating file replicas
by implementing a low-overhead file-replication mechanism.
For example, Shen and Zhu developed a proactive low-
overhead file replication scheme for structured peer-to-peer
networks [16]. Shen and Zhu’s scheme may be incorporated
to overcome this limitation.

To address the above limitations of the data-replication
approach, we are focusing on data-placement strategies
where files are partitioned and distributed across multiple
nodes in a Hadoop cluster without being duplicated. Our data
placement approach does not require any comprehensive
scheme to deal with data replicas.

In our data placement management mechanism, two al-
gorithms are implemented and incorporated into Hadoop’s
HDFS. The first algorithm is to initially distribute file
fragments to heterogeneous nodes in a cluster (see Sec-
tion III-B). When all file fragments of an input file required
by computing nodes are available in a node, these file frag-
ments are distributed to the computing nodes. The second
data-placement algorithm is used to reorganize file fragments
to solve the data skew problem (see Section III-C). There
two cases in which file fragments must be reorganized. First,
new computing nodes are added to an existing cluster to have
the cluster expanded. Second, new data is appended to an
existing input file. In both cases, file fragments distributed
by the initial data placement algorithm can be disrupted.

B. Initial Data Placement

The initial data placement algorithm begins by first divid-
ing a large input file into a number of even-sized fragments.
Then, the data placement algorithm assigns fragments to

nodes in a cluster in accordance to the nodes’ data pro-
cessing speed. Compared with low-performance nodes, high-
performance nodes are excepted to store and process more
file fragments. Let us consider a MapReduce application and
its input file in a heterogeneous Hadoop cluster. Regardless
of the heterogeneity in node processing power, the intial
data placement scheme has to distribute the fragments of
the input file so that all the nodes can complete processing
their local data within almost the same time.

In our experiments we observed that the computing capa-
bility of each node is quite stable for certain tested Hadoop
applications, because the response time of these Hadoop
applications on each node is linearly proportional to input
data size. As such, we can quantify each node’s processing
speed in a heterogeneous cluster using a new term called
computing ratio. The computing ratio of a computing node
with respect to a Hadoop application can be calculated by
profiling the application (see Section IV-A for details on
how to determine computing ratios). It is worth noting that
the computing ratio of a node may vary from application to
application.

C. Data Redistribution

Input file fragments distributed by the initial data place-
ment algorithm might be disrupted due to the following
reasons: (1) new data is appended to an existing input
file; (2) data blocks are deleted from the existing input
file; and (3) new data computing nodes are added into an
existing cluster. To address this dynamic data load-balancing
problem, we implemented a data redistribution algorithm to
reorganize file fragments based on computing ratios.

The data redistribution procedure is described as the
following steps. First, like initial data placement, information
regarding the network topology and disk space utilization of
a cluster is collected by the data distribution server. Second,
the server creates two node lists: a list of nodes in which
the number of local fragments in each node exceeds its
computing capacity and a list of nodes that can handle more
local fragments because of their high performance. The first
list is called over-utilized node list; the second list is termed
as under-utilized node list. Third, the data distribution server
repeatedly moves file fragments from an over-utilized node
to an underutilized node until the data load are evenly
distributed. In a process of migrating data between a pair
of an over-utilized and an underutilized nodes, the server
moves file fragments from a source node in the over-utilized
node list to a destination node in the underutilized node
list. Note that the server decides the number of bytes rather
than fragments and moves fragments from the source to
the destination node. The above data migration process is
repeated until the number of local fragments in each node
matches its speed measured by computing ratio.

IV. IMPLEMENTATION DETAILS

A. Measuring Heterogeneity

Before implementing the initial data placement algorithm,
we need to quantify the heterogeneity of a Hadoop cluster
in terms of data processing speed. Such processing speed
highly depends on data-intensive applications. Thus, het-
erogeneity measurements in the cluster may change while
executing different MapReduce applications. We introduce
a metric - called computing ratio - to measure each node’s
processing speed in a heterogeneous cluster. Computing
ratios are determined by a profiling procedure carried out in
the following steps. First, the data processing operations of
a given MapReduce application are separately performing in
each node. To fairly compare processing speed, we ensure
that all the nodes process the same amount of data. For
example, in one of our experiments the input file size is
set to 1GB. Second, we record the response time of each
node performing the data processing operations. Third, the
shortest response time is used as a reference to normalize the
response time measurements. Last, the normalized values,
called computing ratios, are employed by the data placement
algorithm to allocate input file fragments for the given
MapReduce application.

Now let us consider an example to demonstrate how to
calculate computing ratios used to guide the data distribution
process. Suppose there are three heterogeneous nodes (i.e.,
Node A, B and C) in a Hadoop cluster. After running a
Hadoop application on each node, one collects the response
time of the application on node A, B and C is 10, 20 and 30
seconds, respectively. The response time of the application
on node C is the shortest. Therefore, the computing ratio of
node A with respect to this application is set to 1, which
becomes a reference used to determine computing ratios of
node B and C. Thus, the computing ratios of node B and C
are 2 and 3, respectively. Recall that the computing capacity
of each node is quite stable with respect to a Hadoop
application. Hence, the computing ratios are independent
of input file sizes. Table I shows the response times and
computing ratios for each node in a Hadoop cluster. Table I
also shows the number of file fragments to be distributed to
each node in the cluster. Intuitively, the fast computing node
(i.e., node A) has to handle 30 file fragments whereas the
slow node (i.e., 3) only needs to process 10 fragments.

Table I: Computing ratios, response times and number of
file fragments for three nodes in a Hadoop cluster

Node Responce time Ratio File fragments Speed
Node A 10 1 30 Fastest
Node B 20 2 20 Average
Node C 30 3 10 Slowest

B. Sharing Files among Multiple Applications

The heterogeneity measurement of a cluster depends on
data-intensive applications. If multiple MapReduce applica-
tions must process the same input file, the data placement
mechanism may need to distribute the input file’s fragments
in several ways - one for each MapReduce application. In
the case where multiple applications are similar in terms of
data processing speed, one data placement decision may fit
the needs of all the applications.

C. Data Distribution.

File fragment distribution is governed by a data distribu-
tion server, which constructs a network topology and calcu-
lates disk space utilization. For each MapReduce application,
the server generates and maintains a node list containing
computing-ratio information. The data distribution server ap-
plies the round-robin algorithm to assign input file fragments
to heterogeneous nodes based on their computing ratios.

A small value of computing ratio of a node indicates a
high speed of the node, meaning that the fast node must
process a large number of file fragments. For example, let
us consider a file comprised of 60 file fragments to be
distributed to node A, B, and C. We assume the computing
ratios of these three nodes are 1, 2 and 3, respectively (see
Table I). Given the computing ratios, we can conclude that
among the three computing nodes, node A is the fastest one
whereas node B is the slowest node. As such, the number
of file fragments assigned to each node is proportional
to the node’s processing speed. In this example, the data
distribution server assigns 30 fragments to node A, 20
fragments to node B, and 10 fragments to node C (see
Table I).

V. EVALUATION

We used two data-intensive applications - Grep and Word-
Count - to evaluate the performance of our data place-
ment mechanism in a heterogeneous Hadoop cluster. The
tested cluster consists of five heterogeneous nodes, whose
parameters are summarized in Table II. Both Grep and
WordCount are two MapReduce applications running on
Hadoop clusters. Grep is a tool searching for a regular
expression in a text file; whereas WordCount is a program
used to count words in text files.

Table II: Five Nodes in a Hadoop Heterogeneous Cluster

Node CPU Model CPU(hz) L1 Cache(KB)
Node A Intel Core 2 Duo 2 ×1G=2G 204
Node B Intel Celeron 2.8G 256
Node C Intel Pentium 3 1.2G 256
Node D Intel Pentium 3 1.2G 256
Node E Intel Pentium 3 1.2G 256

We followed the approach described in Section IV-A
to obtain computing ratios of the five computing nodes
with respect of the Grep and WordCount applications (see

Table III). The computing ratios shown in Table III represent
the heterogeneity of the Hadoop cluster with respect to Grep
and WordCount. We conclude from the results given in
Table III) that computing ratios of a Hadoop cluster are ap-
plication dependent. For example, node A is 3.3 times faster
than nodes C-E with respect to the Grep application; node
A is 5 (rather than 3.3) times faster than nodes C-E when
it comes to the WordCount application. The implication of
the results is that given a heterogeneous cluster, one has
to determine computing ratios for each Hadoop application.
Note that computing ratios of each application only needs
to be calculated once for each cluster. If the configuration of
a cluster is updated, computing ratios must be determined
again.

Table III: Computing Ratios of the Five Nodes with
Respective of the Grep and WordCount Applications

Computer Node Ratios for Grep Ratios for WordCount
Node A 1 1
Node B 2 2
Node C 3.3 5
Node D 3.3 5
Node E 3.3 5

Figs. 2(a) and 2(b) show the response times of the Grep
and WordCount application running on each node of the
Hadoop cluster when the input file size is 1.3 GB and 2.6
GB, respectively. The results plotted in Figs. 2(a) and 2(b)
suggest that computing ratios are independent of input file
size, because the response times of Grep and WordCount are
proportional to the file size. Regardless of input file size, the
computation ratios for Grep and WordCount on the 5-node
Hadoop clusters remain unchanged as listed in Table III.

Given the same input file size, Grep’s response times are
shorter than those of WordCount (see Figs. 2(a) and 2(b)).
As a result, the computing ratios of Grep are different from
those of WordCount (see Table III).

Table IV: Six Data Placement Decisions

Notation Data Placement Decisions

S1-2-3.3
Dirstribuating files under the computing ra-
tios of the grep. (This is an optimal data
placement for Grep)

S1-2-5
Dirstribuating files under the computing ra-
tios of the wordcount. (This is an optimal
data placement for WordCount)

480 in each Average distribution of files to each node.
All-in-A Allocating all the files to node A.
All-in-B Allocating all the files to node B.
All-in-C Allocating all the files to node C.

Now we are positioned to evaluate the impacts of data
placement decisions on the response times of Grep and
WordCount (see Figs. 2(c) and 2(d)). Table IV shows
six representative data placement decisions, including two
optimal data-placement decisions (see S1-2-3.3 and S1-2-
5 in Table IV) for the Grep and WordCount applications.

A B C D E
0

200

400

600

800

1000

1200

R
e
s
p
o
n
s
e
 T

im
e
 (

s
)

Node ID

Response of Grep in Each Node

2.6GB

1.3GB

(a) Response time of Grep on each node.

A B C D E
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

R
e
s
p
o
n
s
e
 T

im
e
 (

s
)

Node ID

Response of Wordcount in Each Node

2.6GB

1.3GB

(b) Response time of WordCount on each node.

S1−2−3.3 S1−2−5 480 in each All−in−A All−in−B All−in−C

180

200

220

240

260

280

300

R
e
s
p
o
n
s
e
 T

im
e
 (

s
)

Ratio

Response Time for Grep

(c) Impact of data placement on performance of Grep

S1−2−3.3 S1−2−5 480 in each All−in−A All−in−B All−in−C

540

560

580

600

620

640

660

680

700

R
e
s
p
o
n
s
e
 T

im
e
 (

s
)

Ratio

Response Time for Wordcount

(d) Impact of data placement on performance of WordCount

Figure 2: Response time of Grep and WordCount running on the 5-node Hadoop heterogeneous cluster.

The file fragments of input data are distributed and placed
on the five heterogeneous nodes based on six different data
placement decisions, among which two optimal decisions
(i.e., S1-2-3.3 and S1-2-5 in Table IV) are made based on
the computing ratios given Table III.

Let us use an example to show how the data distribution
server relies on the S1-2-3.3 decision - optimal decision for
Grep - in Table IV to distribute data to the five nodes of the
tested cluster. Recall that the computing ratios of Grep on the
5-node Hadoop cluster are 1, 2, 3.3, 3.3, and 3.3 for nodes
A-E (see Table III). We suppose there are 24 fragments of
the input file for Grep. Thus, the data distribution server
allocates 10 fragments to node A, 5 fragments to node B,
and 3 fragments to nodes C-E.

Fig. 2(c) reveals the impacts of data placement on the
response times of the Grep application. The first (leftmost)
bar in Fig. 2(c) shows the response time of the Grep
application by distributing file fragments based on Grep’s
computing ratios. For comparison purpose, the other bars
in Fig. 2(c) show the response time of Grep on the 5-
node cluster with the other five data-placement decisions.
For example, the third bar in Fig. 2(c) is the response

time of Grep when all the input file fragments are evenly
distributed across the five nodes in the cluster. We observe
from Fig. 2(c) that the first data placement decision (denoted
as S1-2-3.3) leads to the best performance of Grep, because
the input file fragments are distributed strictly according to
the nodes’ computing ratios. If the file fragments are placed
using the ”All-in-C” data-placement decision, Grep performs
extremely poorly. Grep’s response time is unacceptably long
under the ”All-in-C” decision, because all the input file
fragments are placed on node C - one of the slowest node in
the cluster. Under the ”All-in-C” data placement decision,
the fast nodes (i.e., nodes A and B) have to pay extra
overhead to copy a significant amount of data from node
C before processing the input data locally. Compared with
the ”All-in-C” decision, the optimal data placement decision
reduces the response time of Grep by more than 33.1%.

Fig. 2(d) depicts the impacts of data placement decisions
on the response times of WordCount. The second bar in
Fig. 2(d) demonstrates the response time of the WordCount
application on the cluster under an optimal data placement
decision. In this optimal data placement case, the input file
fragments are distributed based on the computing ratios

listed in Table III. To illustrate performance improvement
achieved by our new data placement strategy, we plotted
the other five bars in Fig. 2(d) to show the response time of
WordCount when the other five data-placement decisions are
made and applied. Results plotted in Fig. 2(d) indicate that
the response time of WordCount under the optimal ”S1-2-5”
data placement decision is the shortest compared with all the
other five data placement decisions. For example, compared
with the ”All-in-C” decision, the optimal decision made by
our strategy reduces the response time of WordCount by
10.2%. The ”S1-2-5” data placement decision is proved to
be the best, because this data placement decision is made
based on the heterogeneity measurements - computing ratios
in Table III. Again, the ”All-in-C” data placement decision
leads to the worst performance of WordCount, because under
the ”All-in-C” decision the fast nodes have copy a significant
amount of data from node C. Moving data from node C to
other fast nodes introduces extra overhead.

In summary, the results reported in Figs. 2(c) and 2(d)
show that our data placement scheme can improve the
performance of Grep and Wordcount by up to 33.1% and
10.2% with averages of 17.3% and 7.1%.

VI. RELATED WORK

Implementations of MapReduce. Some research has
been directed at implementing and evaluating performance
of the MapReduce model [5][13][8][10]. For example,
Ranger implemented MapReduce for shared-memory sys-
tems [13]. Phoenix leads to scalable performance for both
multi-core chips and conventional symmetric multiproces-
sors. Bingsheng et al. developed Mars - a MapReduce
framework for graphics processors(GPUs) [5]. The goal of
Mars is to hide the programming complexity of GPUs behind
the simple MapReduce interface.

MapReduce Frameworks in Heterogeneous Environ-
ments. Increasing evidence shows that heterogeneity prob-
lems must be tackled in MapReduce frameworks [11][12].
Zaharia et al. implemented a new scheduler - LATE - in
Hadoop to improve MapReduce performance by specula-
tively executing tasks that hurt response time the most [12].
Asymmetric multi-core processors (AMPs) address the I/O
bottleneck issue, using double-buffering and asynchronous
I/O to support MapReduce functions in clusters with asym-
metric components [11]. Chao et al. classified MapReduce
workloads into three categories based on CPU and I/O
utilization [17]. They designed the Triple-Queue Scheduler
in light of the dynamic MapReduce workload prediction
mechanism called MR-Predict. Although the above tech-
niques can improve MapReduce performance of heteroge-
neous clusters, they do not take into account data locality
and data movement overhead.

Parallel File Systems. There are two types of file systems
handling large files for clusters, namely, parallel file sys-
tems and Internet service file systems [18]. Representative

parallel file systems in clusters are Lustre [3] and PVFS
(Parallel Virtual File System) [2]. Hadoop distribution file
system(HDFS) [7] is a popular Internet service file system
that provides the right abstraction for data processing in
Mapreduce frameworks.

VII. CONCLUSIONS AND FUTURE WORK

We identified performance problem in HDFS (Hadoop
Distributed File System) on heterogeneous clusters. Moti-
vated by the performance degradation caused by heterogene-
ity, we have designed and implemented a data placement
mechanism in HDFS. The new mechanism distributes frag-
ments of an input file to heterogeneous nodes based on their
computing capacities. Our approach improves performance
of Hadoop heterogeneous clusters.

Our future research will foucus on handling the data
redundance issue of data allocation in the cluster, and de-
signing a dynamic data distribution mechanism for mutliple
data intensive applications working together.

AVAILABILITY

The source code of this project is freely available at:
http://www.eng.auburn.edu/∼xqin/software/hdfs-hc/.

ACKNOWLEDGMENT

The work reported in this paper was supported by the US
National Science Foundation under Grants CCF-0845257
(CAREER), CNS-0917137 (CSR), CNS-0757778 (CSR),
CCF-0742187 (CPA), CNS-0831502 (CyberTrust), CNS-
0855251 (CRI), OCI-0753305 (CI-TEAM), DUE-0837341
(CCLI), and DUE-0830831 (SFS), as well as Auburn Uni-
versity under a startup grant and a gift (Number 2005-04-
070) from the Intel Corporation.

REFERENCES

[1] http://lucene.apache.org/hadoop.

[2] Parallel virtual file system, version 2.
http://www.pvfs2.org.

[3] A scalable, high performance file system.
http://lustre.org.

[4] Yahoo! launches worlds largest hadoop production applica-
tion. http://tinyurl.com/2hgzv7.

[5] B.He, W.Fang, Q.Luo, N.Govindaraju, and T.Wang. Mars: a
MapReduce framework on graphics processors. ACM, 2008.

[6] C.Olston, B.Reed, U.Srivastava, R.Kumar, and A.Tomkins.
Pig latin: a not-so-foreign language for data processing. In
SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD in-
ternational conference on Management of data, pages 1099–
1110. ACM, 2008.

[7] D.Borthakur. The Hadoop Distributed File System: Architec-
ture and Design. The Apache Software Foundation, 2007.

[8] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. OSDI ’04, pages 137–150, 2008.

[9] H.Yang, A.Dasdan, R.Hsiao, and D.S.Parker. Map-reduce-
merge: simplified relational data processing on large clusters.
In SIGMOD ’07: Proceedings of the 2007 ACM SIGMOD in-
ternational conference on Management of data, pages 1029–
1040. ACM, 2007.

[10] M.Isard, M.Budiu, Y.Yu, A.Birrell, and D.Fetterly. Dryad:
distributed data-parallel programs from sequential building
blocks. In EuroSys ’07: Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems
2007, pages 59–72. ACM, 2007.

[11] M.Rafique, B.Rose, A.Butt, and D.Nikolopoulos. Supporting
mapreduce on large-scale asymmetric multi-core clusters.
SIGOPS Oper. Syst. Rev., 43(2):25–34, 2009.

[12] M.Zaharia, A.Konwinski, A.Joseph, Y.zatz, and I.Stoica. Im-
proving mapreduce performance in heterogeneous environ-
ments. In OSDI’08: 8th USENIX Symposium on Operating
Systems Design and Implementation, October 2008.

[13] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and
C. Kozyrakis. Evaluating mapreduce for multi-core and multi-
processor systems. High-Performance Computer Architecture,
International Symposium on, 0:13–24, 2007.

[14] R.Pike, S.Dorward, R.Griesemer, and S.Quinlan. Interpreting
the data: Parallel analysis with Sawzall, volume 13. IOS
Press, 2005.

[15] S.Ghemawat, H.Gobioff, and S.Leung. The google file
system. SIGOPS Oper. Syst. Rev., 37(5):29–43, 2003.

[16] Haiying Shen and Yingwu Zhu. A proactive low-overhead
file replication scheme for structured p2p content delivery
networks. J. Parallel Distrib. Comput., 69(5):429–440, 2009.

[17] T.Chao, H.Zhou, Y.He, and L.Zha. A Dynamic MapReduce
Scheduler for Heterogeneous Workloads. IEEE Computer
Society, 2009.

[18] W.Tantisiriroj, S.Patil, and G.Gibson. Data-intensive file
systems for internet services: A rose by any other name
... Carnegie Mellon University Parallel Data Lab Technical
Report CMU-PDL-08-114, October 2008.

VIII. BIOGRAPHIES

Jiong Xie received the BS and MS degrees in computer
science from BUAA (Beijing University of Aeronautics and
Astronautics), China, in 2004 and 2008. He is currently
working toward the PhD degree at the Department of Com-
puter Science and Software Engineering, Auburn University.
His research interests include scheduling techniques and par-
allel algorithms for clusters, and also multi-core processors
and software techniques for I/O-intensive applications.

Shu Yin received the BS degree in communication en-
gineering and the MS degree in signal and information
processing from Wuhan University of Technology (WUT) in
2006 and 2008, respectively. He is currently working toward

the PhD degree at the Department of Computer Science
and Software Engineering, Auburn University. His research
interests include storage systems, reliability modeling, fault
tolerance, energy-efficient computing, and wireless commu-
nications. He is a student member of the IEEE.

Xiaojun Ruan received the BS degree in computer sci-
ence from Shandong University in 2005. He is currently
working toward the PhD degree at the Department of Com-
puter Science and Software Engineering, Auburn University.
His research interests are in parallel and distributed systems,
storage systems, real-time computing, performance evalu-
ation, and fault tolerance. His research interests focus on
highperformance parallel cluster computing, storage system,
and distributed system. He is a student member of the IEEE.

Zhiyang Ding received the BS degree in computer sci-
ence from Tianjin University, Tianjin, China in 2006. From
2006, he works toward the PhD degree at the Department
of Computer Science and Software Engineering, Auburn
University. His research interests are Smart Disk system,
MapReduce programming model, parallel computing and
high-performance computing. He is a student member of
the IEEE.

Yun Tian graduated from Northwest University, computer
science and technology major in Information Science and
Technology College with the BS degree in 2006, Xi’an,
China. She is currently working toward the PhD degree at the
Department of Computer Science and Software Engineering
at Auburn University. Her research interests focus on se-
curity issues in storage system, distributed system, parallel
computing and cloud computing.

James Majors received the BS degree in Software En-
gineering from Auburn University in 2009. He is currently
working toward the PhD degree at the Department of Com-
puter Science and Software Engineering, Auburn Univer-
sity. His research interests include storage systems, energy-
efficient computing, operating systems, and filesystems. His
research interests focus on secure filesystems and distributed
systems. He is a student member of the IEEE.

Adam Manzanares received the BS degree in computer
science from the New Mexico Institute of Mining and
Technology, United States, in 2006. He is currently working
toward the PhD degree at the Department of Computer Sci-
ence and Software Engineering, Auburn University. During
the Summers of 2002-2007, he has worked as a student
intern at the Los Alamos National Laboratory. His research
interests include energy-efficient computing, modeling and
simulation, and high-performance computing. He is a student
member of the IEEE.

Xiao Qin received the BS and MS degrees in com-
puter science from Huazhong University of Science and
Technology in 1992 and 1999, respectively, and the PhD
degree in computer science from the University of Nebraska-
Lincoln in 2004. Currently, he is an assistant professor in the
Department of Computer Science and Software Engineering

at Auburn University. Prior to joining Auburn University in
2007, he had been an assistant professor with New Mexico
Institute of Mining and Technology (New Mexico Tech) for
three years. He received the US National Science Foundation
(NSF) CAREER Award in 2009. In 2007, he received an
NSF CPA Award and an NSF CSR Award. His research
interests include parallel and distributed systems, storage
systems, fault tolerance, real-time systems, and performance
evaluation. His research is supported by the US National
Science Foundation, Auburn University, and Intel Corpora-
tion. He had served as a subject area editor of the IEEE
Distributed System Online (2000-2001). He has been on the
program committees of various international conferences,
including IEEE Cluster, IEEE IPCCC, and ICPP. He is a
senior member of the IEEE.

